| Peer-Reviewed

Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress

Received: 30 September 2018     Accepted: 24 October 2018     Published: 18 April 2019
Views:       Downloads:
Abstract

Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. At the harsh environmental conditions microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration. In this respect, the aim if this study is to evaluate the influence temperature and pH of the medium, its osmolality and the presence of heavy metal ions on the growth of the biomass of biofilm formed by B. subtilis 170 and E. coli K- 12 strains and their relationship in them. Тhis study was used the methods for a static cultivation of biofilm by co-cultures of B. subtilis 170 and E. coli K- 12 strains and determination of colony forming units in their structures to evaluate of the relationships between them. The results of the present study show that temperature of 20°C and pH-value in the range of 5.0-6.0 help to maximum growth of biomass of biofilm formed by co-cultivation of B. subtilis 170 and E. coli 1655 strains. The competitive relationships are observed at a temperature of 20°C, at pH-value in the range from 5.0 to 6.0 at low osmolality of the medium of 100 to 150 mM, at content of Fe+ 2 from 5 μM to 100 μM. The increase of the temperature above 30°C and the pH of the medium, the high osmolality of 200 mM triggers antagonistic interactions between B. subtilis 170 and E. coli K- 12 strains, while at content of Fe+ 2 of 50 μM was observed symbiosis in the structure of biofilms in this study.

Published in Science Journal of Chemistry (Volume 7, Issue 1)
DOI 10.11648/j.sjc.20190701.13
Page(s) 15-18
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

B. Subtilis 170, E. Coli 1655, Biofilm, Competition, Antagonism

References
[1] Elias S., E. Banin, FEMS Microbiol Rev, 36 (5), 990–1004 (2012).
[2] Moons P, Chris W. Michiels, A. Aertsen, Critical Reviews in Microbiology, 35(3), 157–168 (2009).
[3] Huang R., M. Li, R. Gregory, Virulence, 2 (5), 435-444 (2011).
[4] Martinez, R. Kitko, J. Patrick Mershon, H.. Adcox, K.. Malek, M. Berkmen, J. L. Slonczewski, Applied and Environmental Microbiology, 78(10), 3706 –3714(2012).
[5] Gambino M., F. Cappitelli, Biofouling, 32(2), 167–178 (2016).
[6] Grudeva V., P. Moncheva, S. Naumova, B. Gocheva, T. Nedeva, S. Antonova-Nikolova (2006). In: Manual of Microbiology; (“St. Kliment Ohridski” University Edition), Sofia, 146-153.
[7] Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T, Oshima T, Ogasawara N, Yamada M., PloS One., 6, 20-63 (2011).
[8] Chen J, Shen J, Solem C, Jense, Appl Environ Microbiol., 79, 6140–6147(2013).
[9] Goller, C., X. Wang, Y. Itoh, T. Romeo, J. Bacteriol. 188, 8022–8032 (2006).
[10] Karatan Е., P. Watnick, Microbiology and Molecular Biology Reviews, 73 (2), 310–347 (2009).
[11] Ryder C., M. Byrd, and D. J. Wozniak, Curr. Opin. Microbiol., 10,644–64 (2007).
[12] Bokare AD, Choi W., J Hazard Mat, 275, 121–135(2014).
[13] Cabiscol E, Tamarit J, Ros J., Intern Microbiol., 3, 3–8(2000).
[14] Green J, Paget MS., Nat Rev Microbiol., 2, 954–966 (2004).
[15] Imlay J., Curr Opin Microbiol., 24, 124–131 (2015).
Cite This Article
  • APA Style

    Ivo Ganchev. (2019). Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress. Science Journal of Chemistry, 7(1), 15-18. https://doi.org/10.11648/j.sjc.20190701.13

    Copy | Download

    ACS Style

    Ivo Ganchev. Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress. Sci. J. Chem. 2019, 7(1), 15-18. doi: 10.11648/j.sjc.20190701.13

    Copy | Download

    AMA Style

    Ivo Ganchev. Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress. Sci J Chem. 2019;7(1):15-18. doi: 10.11648/j.sjc.20190701.13

    Copy | Download

  • @article{10.11648/j.sjc.20190701.13,
      author = {Ivo Ganchev},
      title = {Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress},
      journal = {Science Journal of Chemistry},
      volume = {7},
      number = {1},
      pages = {15-18},
      doi = {10.11648/j.sjc.20190701.13},
      url = {https://doi.org/10.11648/j.sjc.20190701.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20190701.13},
      abstract = {Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. At the harsh environmental conditions microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration. In this respect, the aim if this study is to evaluate the influence temperature and pH of the medium, its osmolality and the presence of heavy metal ions on the growth of the biomass of biofilm formed by B. subtilis 170 and E. coli K- 12 strains and their relationship in them. Тhis study was used the methods for a static cultivation of biofilm by co-cultures of B. subtilis 170 and E. coli K- 12 strains and determination of colony forming units in their structures to evaluate of the relationships between them. The results of the present study show that temperature of 20°C and pH-value in the range of 5.0-6.0 help to maximum growth of biomass of biofilm formed by co-cultivation of B. subtilis 170 and E. coli 1655 strains. The competitive relationships are observed at a temperature of 20°C, at pH-value in the range from 5.0 to 6.0 at low osmolality of the medium of 100 to 150 mM, at content of Fe+ 2 from 5 μM to 100 μM. The increase of the temperature above 30°C and the pH of the medium, the high osmolality of 200 mM triggers antagonistic interactions between B. subtilis 170 and E. coli K- 12 strains, while at content of Fe+ 2 of 50 μM was observed symbiosis in the structure of biofilms in this study.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress
    AU  - Ivo Ganchev
    Y1  - 2019/04/18
    PY  - 2019
    N1  - https://doi.org/10.11648/j.sjc.20190701.13
    DO  - 10.11648/j.sjc.20190701.13
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 15
    EP  - 18
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20190701.13
    AB  - Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. At the harsh environmental conditions microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration. In this respect, the aim if this study is to evaluate the influence temperature and pH of the medium, its osmolality and the presence of heavy metal ions on the growth of the biomass of biofilm formed by B. subtilis 170 and E. coli K- 12 strains and their relationship in them. Тhis study was used the methods for a static cultivation of biofilm by co-cultures of B. subtilis 170 and E. coli K- 12 strains and determination of colony forming units in their structures to evaluate of the relationships between them. The results of the present study show that temperature of 20°C and pH-value in the range of 5.0-6.0 help to maximum growth of biomass of biofilm formed by co-cultivation of B. subtilis 170 and E. coli 1655 strains. The competitive relationships are observed at a temperature of 20°C, at pH-value in the range from 5.0 to 6.0 at low osmolality of the medium of 100 to 150 mM, at content of Fe+ 2 from 5 μM to 100 μM. The increase of the temperature above 30°C and the pH of the medium, the high osmolality of 200 mM triggers antagonistic interactions between B. subtilis 170 and E. coli K- 12 strains, while at content of Fe+ 2 of 50 μM was observed symbiosis in the structure of biofilms in this study.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

  • Sections