| Peer-Reviewed

Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization

Received: 22 April 2020     Accepted: 14 May 2020     Published: 27 May 2020
Views:       Downloads:
Abstract

The chemical characteristics of the typha-starch composite have been investigated in this study to optimize the component of the habitat insulation panel obtained from the two bio sourced materials. Four mixtures have been formulated and tested (starch 0g + typha 620 g; starch 62g + typha 558 g; starch 93g + typha 527 g; starch 124g + typha 496 g). The panels were made up of six different granulometries (0.125 mm; 0.250 mm; 0.425 mm; 1.25 mm 1.70 mm; 3.15 mm). A total of 72 panels were made and tested. The density of the panels varies from 515.6 kg.m-3 to 809.74 kg.m-3. Chemical characterisation reveals that typha particles contain a high content of organic matter and dry matter, as well as a significant proportion of water and volatile components. The typha which contains very little protein, little minerals and lipids, could contribute to the thermosetting during the manufacturing process of insulating panels. Formulations with low mass density such as L91 (1.70 mm + 124 g starch) and G62 (1.25 mm + 0 g starch) show good thermal properties according to literature.

Published in International Journal of Sustainable and Green Energy (Volume 9, Issue 2)
DOI 10.11648/j.ijrse.20200902.12
Page(s) 29-37
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Typha-starch Composite, Bio Sourced Insulation, Chemical Properties, Green Building

References
[1] G. O. S. Omolola, “Thermomechanical formulation and characterisation of mortars reinforced with banana trunk fibers”. Ph.D. Thesis, Université d’Abomey-Calavi, 2017.
[2] H. W. Hounkpatin, G. C., Sèmassou, B. Kounouhewa, E. Sanya, A. Vianou, “Study of the impact of thermal inputs by roofs on the hygrothermal comfort of habitats in tropical environment”, International Journal of Current Research, 2018a, Vol. 10, Issue, 08, pp. 72323-72336.
[3] H. W. Hounkpatin, B. Kounouhewa, K. V. Chégnimonhan, C. Sèmassou and A. Vianou, “Numerical Investigation of the Effects of Insulated Envelopes on Hygrothermal Comfort within Habitats of Southern Benin: Test of a Local Material”, Current Journal of Applied Science and Technology, 2018b, vol 31, n°6, pp. 1-19.
[4] M. Krus, W. Theuerkorn, T. Großkinsky, H. Künzel. “New sustainable and insulating building material made of cattail. 10th Nordic Symposium on Building Physics”, 15-19 June 2014, Lund, Sweden, pp. 1252-1260.
[5] A. S. Diaw, H. B. Bal, M. Wade, S. Gaye “Use of Typha Australis in the Habitat for the Improvement of Energy Efficiency of Buildings”, Journal of Scientific and Engineering Research, 2018, vol 5, n°1, pp. 164-171.
[6] I. Niang, C. Maalouf, T. Moussa, C. Bliard, E. Samin, C. Thomachot-Schneider, M. Lachi, H. Pron, T. H. Mai and S. Gaye “Hygrothermal performance of various Typha–clay composite, Journal of Building Physics, 2018, pp. 1-20.
[7] A. Y. Nenonene, K. Koba, K. Sanda, L. Rigal “Composition chimique et propriétés adhésives d’extraits d’organes tannifères de quelques plantes du Togo pour l’agglomération de particules de tige de kénaf (Hibiscus cannabinus L.), J. Soc. Ouest-Afr. Chim, 2014, vol 37, pp. 49-55.
[8] B. S. Esteves., A. Enrich-Prast and M. S. Suzuki, “Allometric relations for Typha domingensis natural populations”. Acta limnol. Bras., 2008, vol. 20, n°. 4, p. p 305-311.
[9] J. Odjoubere. “Pressions anthropiques sur les milieux humides dans le sud du Benin. Revue de géographie du laboratoire leïdi”, 2016, vol 15, 184-199.
[10] AFNOR (Association Française de Normalisation). Sols: reconnaissance et essais de détermination de la teneur en eau pondérale des matériaux par étuvage. NF P 94-050. 1995
[11] L. Ehrman (1994) “Book review. The Genome of Drosophila melanogaster”, J. Hered, 1994, vol 85, n°6. 495.
[12] A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, “Determination of Extractives in Biomass”. Laboratory Analytical Procedure (LAP). Issue Date: 7/17/2005.
[13] J. Folch, M. Lees, G. H. S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues, The Journal of Biological Chemistry, 1957, vol 226, pp. 497–509.
[14] J. Dumay, “Extraction de lipides en voie aqueuse par bioréacteur enzymatique combiné à l’ultrafiltration: application à la valorisation de co-produits de poisson (Sardina pilchardus)”, Thèse de doctorat de l’université de Nantes, France 2006.
[15] A. Y. Nenonene, “Elaboration et caractérisation mécanique de panneaux de particules de tige de kénaf et de bioadhésifs à base de colle d’os, de tannin ou de mucilage”, Thèse de doctorat, Université de Toulouse, France, 2009.
[16] D. Chen, J. Li and J. Ren, “Study on sound absorption property of ramie fiber reinforced poly (L-lactic acid) composites: Morphology and properties. Composite. Part A”, Applied Science Manufacture, 2010, vol 41, n°8, pp. 1012-1023.
[17] S. Soulama, “Caractérisation mécanique et thermique de biocomposites à matrice polystyrène recyclé renforcée par des coques de cotonnier (Gossypium hirsutum L.), ou de particules de bois de kénaf (Hibiscus Cannabinus L.)”. Thèse Sciences pour l’ingénieur (Génie Mécanique). Belfort – Montbéliard: Université de Technologie de Belfort – Montbéliard, 2014.
Cite This Article
  • APA Style

    Henri Wilfried Hounkpatin, Victorin Kouamy Chégnimonhan, Elisabeth Allognon-Houessou, Basile Bruno Kounouhewa. (2020). Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization. International Journal of Sustainable and Green Energy, 9(2), 29-37. https://doi.org/10.11648/j.ijrse.20200902.12

    Copy | Download

    ACS Style

    Henri Wilfried Hounkpatin; Victorin Kouamy Chégnimonhan; Elisabeth Allognon-Houessou; Basile Bruno Kounouhewa. Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization. Int. J. Sustain. Green Energy 2020, 9(2), 29-37. doi: 10.11648/j.ijrse.20200902.12

    Copy | Download

    AMA Style

    Henri Wilfried Hounkpatin, Victorin Kouamy Chégnimonhan, Elisabeth Allognon-Houessou, Basile Bruno Kounouhewa. Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization. Int J Sustain Green Energy. 2020;9(2):29-37. doi: 10.11648/j.ijrse.20200902.12

    Copy | Download

  • @article{10.11648/j.ijrse.20200902.12,
      author = {Henri Wilfried Hounkpatin and Victorin Kouamy Chégnimonhan and Elisabeth Allognon-Houessou and Basile Bruno Kounouhewa},
      title = {Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization},
      journal = {International Journal of Sustainable and Green Energy},
      volume = {9},
      number = {2},
      pages = {29-37},
      doi = {10.11648/j.ijrse.20200902.12},
      url = {https://doi.org/10.11648/j.ijrse.20200902.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijrse.20200902.12},
      abstract = {The chemical characteristics of the typha-starch composite have been investigated in this study to optimize the component of the habitat insulation panel obtained from the two bio sourced materials. Four mixtures have been formulated and tested (starch 0g + typha 620 g; starch 62g + typha 558 g; starch 93g + typha 527 g; starch 124g + typha 496 g). The panels were made up of six different granulometries (0.125 mm; 0.250 mm; 0.425 mm; 1.25 mm 1.70 mm; 3.15 mm). A total of 72 panels were made and tested. The density of the panels varies from 515.6 kg.m-3 to 809.74 kg.m-3. Chemical characterisation reveals that typha particles contain a high content of organic matter and dry matter, as well as a significant proportion of water and volatile components. The typha which contains very little protein, little minerals and lipids, could contribute to the thermosetting during the manufacturing process of insulating panels. Formulations with low mass density such as L91 (1.70 mm + 124 g starch) and G62 (1.25 mm + 0 g starch) show good thermal properties according to literature.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Thermal Insulation Panel Based on Vegetable Typha Domingensis and Starch: Formulation and Physico-chemical Characterization
    AU  - Henri Wilfried Hounkpatin
    AU  - Victorin Kouamy Chégnimonhan
    AU  - Elisabeth Allognon-Houessou
    AU  - Basile Bruno Kounouhewa
    Y1  - 2020/05/27
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ijrse.20200902.12
    DO  - 10.11648/j.ijrse.20200902.12
    T2  - International Journal of Sustainable and Green Energy
    JF  - International Journal of Sustainable and Green Energy
    JO  - International Journal of Sustainable and Green Energy
    SP  - 29
    EP  - 37
    PB  - Science Publishing Group
    SN  - 2575-1549
    UR  - https://doi.org/10.11648/j.ijrse.20200902.12
    AB  - The chemical characteristics of the typha-starch composite have been investigated in this study to optimize the component of the habitat insulation panel obtained from the two bio sourced materials. Four mixtures have been formulated and tested (starch 0g + typha 620 g; starch 62g + typha 558 g; starch 93g + typha 527 g; starch 124g + typha 496 g). The panels were made up of six different granulometries (0.125 mm; 0.250 mm; 0.425 mm; 1.25 mm 1.70 mm; 3.15 mm). A total of 72 panels were made and tested. The density of the panels varies from 515.6 kg.m-3 to 809.74 kg.m-3. Chemical characterisation reveals that typha particles contain a high content of organic matter and dry matter, as well as a significant proportion of water and volatile components. The typha which contains very little protein, little minerals and lipids, could contribute to the thermosetting during the manufacturing process of insulating panels. Formulations with low mass density such as L91 (1.70 mm + 124 g starch) and G62 (1.25 mm + 0 g starch) show good thermal properties according to literature.
    VL  - 9
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Radiation Physics (LPR), University of Abomey-Calavi, Cotonou, Benin

  • National Institute for Agronomic Research of Benin, CRA Agonkanmey, Cotonou, Benin

  • Laboratory of Materials Thermophysical Characterization and Energy Appropriation (Labo- CTMAE/UAC), University of Abomey-Calavi, Cotonou, Benin

  • Laboratory of Radiation Physics (LPR), University of Abomey-Calavi, Cotonou, Benin

  • Sections